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I. Phys : Condens. Matter 6 (1994) 1239-1252. Pnnted in the UK 

New developments in the theory of the hopping conductivity 
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92521. USA 

Received 12 August 1993, in final form 10 November 1993 

Abstract. At present the relevance of percolative transport to traditional glasses is being 
established. The electronic glasses represent (relatively) well defined systems in which the effects 
of e.g. ‘interactions’ and ‘disorder’ may be isolated, and for which the percolative aspects of 
transport are relatively well understood. Thus these systems (spatially random, SR. and variable- 
range hopping, YRH) can be useful as models for glassy conduction processes. However, some 
inconsistencies in the published theoretical descriptions of such system exist, namely regarding 
the placement of lhe critical (scaling, of peak) frequency and the relationship of the frequency 
dependence of the AC conductivity to critical exponents from percolation theory. These questions 
are clarified here.’Furlher conclusions about the nature of the scaling relationships between the 
AC and DC conductivities are drawn. The role of stochasticity, or randomness in the definition 
of the scaling frequency, is emphasized. 

1.1. Transport in glasses: theoretical basis 

The questions of the appropriate form of glass transport equations [ I d ] ,  as well as of the 
best approximations to their solution 17-10] have generated enormous controversy. The 
term ‘glass’ is itself riddled with controversy [ll-151. Here the term is used in the sense 
of either disordered solids or liquids with continuous distributions of transition rates. The 
question of when a system is sufficiently disordered to be called a glass is left to other 
publications [16-181. 

Two fundamental perspectives exist regarding transport in disordered systems. One starts 
from the assumed validity of ‘percolative’ transport 11-33. In such a picture, space, while 
isotropic in the mean, is strongly inhomogeneous. Thus only certain portions of the system 
can be utilized for transport upon application of e.g. an electric field [Z] (the description of 
viscous flow is somewhat more complex [NI), but temporal constancy is,implied, i.e. the 
same transport path will be utilized in successive applications of an electric field. This is 
to be contrasted with diffusive transport, in which spatial homogeneity is guaranteed, but 
for which the exact path of transport is never repeated. Traditional glasses and/oq viscous 
liquids obviously cannot be rigidly classified into either ‘of these two categories. Clearly, 
as the temperature is dropped, the transport becomes more nearly percolative in character. 
There is a growing suspicion [1,3,19] that the cross-over occurs above the traditional glass 
transition, in’ particular at or near the mode-coupling temperature, Tc. 

While the question of the character of’transport’in glasses generally has not been 
re+olved, three facts about electronic glasses are clear., Electronic glasses exemplify 
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percolative transport [20]. The microscopic transition-rate theory is rather well developed, 
and the criteria for the selection of distributions of microscopic transition rates is clearly 
defined. Furthermore, it is possible to isolate the effects of static disorder and dynamic 
interactions [21-2.31. Also many features of ‘glassy’ transport in traditional glasses are 
shared by electronic glasses; the general structure of Rea(o)  is the same except for the DC 
limit [24-261. Although an exponential function of T in both cases, the electronic glasses 
are usually Arrhenius [20 or sub-Arrhenius [27] in form while ‘traditional‘ glasses are either 
Arrhenius [28] or super-Arrhenius [ZO]. So understanding transpodrelaxation in electronic 
glasses is relevant to interpretation of glassy relaxation. However, some inconsistencies 
[30,31] in the theory of the hopping conduction of electronic glasses need to be addressed 
before the analogies are drawn. This is one purpose of this paper. 

1.2. Experimental results: universalities 

Similarities in the experimental results from various disordered systems have been noted 
for at least 20 years [32,33], generating already 15 years ago the term ‘universal 
dielectric’ response [24-261. Now it is known that the similarities tun even deeper than 
suspected at that time. The real part of the AC conductivity in a huge number [24- 
U] of systems is slightly sublinear in w and weakly temperature dependent. The DC 
conductivity is exponentially temperature dependent. The onset of dispersion (strong 
frequency dependence) occurs 134-371 at a frequency proportional to uDc. If the DC 
conductivity is subtracted from Reu (w) and the result is divided by w (i.e. yielding Imc(w)) 
a peak is very often found [38-40] at a frequency up proportional to um. This peak is 
invariably located near the onset of dispersion, i.e. the magnitude of Reu(w,) is not greatly 
different from QC). Obviously wp cannot be located much above the onset of dispersion, 
or one would see the different frequency dependences below and above up already in plots 
of Reu(w) without having to subtract um. Furthermore, it has been demonstrated [31,38] 
that results for u(w)  for various temperatures and systems can be made to coincide by the 
choice of the scaled axes 

with g ( x )  an (approximate) sublinear power of x for o > U,, and where w, is a critical 
frequency proportional to ox. It has been shown [41] that a scheme for calculating a 
critical frequency can be developed which in variable-range-hopping (VRH) systems ( p  Y 

0.25) and ionic glasses ( p  = 0) yields the scaling relationship (1) and also demonstrates the 
equality of w, and wp. This paper derives the existence of the same scaling relationship in 
spatially random (SR) systems (with p = 0), and shows that the critical frequency can be 
determined by the same procedure as in VRH systems. It may be significant that for p = 
0, and with substitution of u(oJ for um, (la) yields a scaling form for a(w) observed in 
dipolar viscous liquids [42-44]. 

It is repeated here that the identification of the peak frequency in Imc(o) with critical 
percolation of pair (or renormalized-pair) processes is sufficient to make o, cx u m  and 
U(& = um. This makes a clarification of the concept and calculation of o, essential; 
recently incorrect expressions for w, in spatially random systems have been reported [30,31]. 
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Also, it h i s  been suggested [45,46] that critical exponents of percolation are relevant 
to the frequency dependence of Reo(w) for w > U,. An argument against this suggestion 
[41], was the demonshation that for VRH systems the conductivity even at w, was dominated 
by the ciment passing through isolated critical resistances. An aim of this article is further 
clarification of the role of percolation exponents in U@); this is accomplished by addressing 
the frequency dependence of a(w) in the multiplehopping regime, or MHR, just above the 
loss peak frequency, w,. 

1.3. Spatial and energefical disorder 

Commonly investigated electronic glassy systems include VRH systems [27,47] and SR 
systems 1481. In both, electrons tunnel [49,50] (phonon-assisted ‘hopping’) from localized 
state (at site i) to localized state (at site j ) .  In the latter, all the sites may be taken to be at 
the same energy EO (measured from the Fermi energy, EF), but to be distributed at random. 
In the former, the individual site energies also take~on random values (over an energy range 
W with the Fermi energy usually assumed to be in the middle of the energy range). More 
complicated versions are possible [51], but neglected here, where we concentrate on SR 
systems. 

It should be noted that in the more traditional glasses, ‘hopping’ processes are classical 
[4,8,11,17], over a barrier. Both the energies of the states and the heights of the barriers are 
random variables. If the energy relief is largely due to a random distribution of charges, these 
random energies may be correlated. The only way to generate an exponential dependence 
on the ‘hopping’ length in traditional glasses is to wite the barrier heights as an explicit 
function of the hopping length, as in correlated barrier hopping (CBH) [51]. So in the 
electronic glasses one may consider in general the cases of r percolation (SR systems) 
and r ,  E percolation (VRH systems); in the ‘traditional‘ glasses, the case studied amounts 
essentially to E percolation. Nevertheless, it will be argued that the source of the randomness 
is not relevant to generalized ‘scaling’ formulations of the conductivity, only to some of 
the specific results. In particular, in r percolation ( E  percolation) the scaling frequency, 
U,, depends only on r ( E ) ,  while in r, E percolation, the scaling frequency depends on 
a competition between r and E ,  just as does the DC conductivity. If ‘either r or E (or 
a contribution to r andor E )  is not a random variable, then the effect of r (or E ,  or the 
non-stochastic component thereof) is felt simply as a uniform multiplicative constant in both 
u(w) and am; the ratio a(o)/am contains no contribution and neither does w,. Another 
important result is that the power p is non-zero only in the case of r, E percolation [38] 
(VRH [27]); otherwise p i s  zero. 

1.4. Aims and organization 

It is desired to. 

(A) show that critical percolation of conhibuting m’icroscopic processes defines the DC 
conductivity and the loss peak frequency, w,, 

(B) obtain a semiquantitative result for g ( w / o J P )  = a(w)/um (corresponding to the 
scaled axes of (1))~in SR systems in the MHR, 

(C) show [53] that the role of percolation theory in the frequency dependence of g is 
confined to frequencies w such that w < w,, 

@) show that, in analogy to ionic conducting glasses [54], the MHR sets in when the 
maximal hopping length is equal to the typical separation ro of contributing sites, in contrast 
to critical percolation, when the maximal hopping length is equal to the length of the critical, 
percolating hopping processes, i.e. (2.7)’/3r~, and 



1242 A Hunt 

(E) show using the results from @) that an interpretation of the departure from scaling in 
ionic [54,55] and dipolar 1441 glasses at frequencies some few decades above U, as passing 
from that M H R  to simple pair hopping can be strengthened. The critical barrier height may 
exceed typical barrier heights analogously to @); these energies may define the bounds 
of the MHR, possibly helping to resolve the controversy [56,57] regarding calculation of 
relevant microscopic barrier heights and comparison with experiment. 

2. Model 

Spatially random electronic 'hopping' systems consist of N sites per unit volume, distributed 
randomly (with uniform spatial probability density). All sites have energies EO (measured 
from the Fermi energy). Such a model can represent impurity conduction systems 1581 if the 
width of the distribution of site energies is small compared with the distance EO from the 
centre of the distribution to the Fermi energy, and if kT is large compared with the energy 
of interaction of electrons on neighbouring sites. Mapping the rate equation for transport 

onto a random impedance network [49,59] yields 

R;' = (e'u,h/kT) exp(-Eo/kT - 2rij/a) 

Ci = (e'/kT) exp(-EojkT) 

for the impedance values. Rjj connects sites i and j ,  and Ci connects site i through 
a potential generator to ground. The meanings of the symbols are as follows: wij. the 
quantum-mechanical transition rate from i to j ;  fi, the occupation probability of site i 
(according to Fermi-Dirac statistics); e', square of the electronic charge; kT, the Boltzmann 
constant multiplied by the temperature; uph. a fundamental rate constant roughly 10" Hz; 
a, the localization radius; and rjj the site separation i, j .  Physically, Rij represents the 
dii%culty of transferring a unit charge from i to j ,  while Ct describes the amount of charge 
generated at a site i by a unit change in the external potential. The product of R and C has 
the usual interpretation of a relaxation time 131,591. 

One can also write 

Rjj = Ro exp(Eo/kT + 2rij/a) Rh exp(2rjjla) RA exp f i j  (4) 

since exp Eo/kT is common to all R values. Note that any simple combination of R and 
C values representing, a pair.(or augmented-pair) relaxation time will have a form similar 
to 

RijCiCj/(Ci + Cj) = RijCo/2 = ;U;' exp(2rij/a) (5) 

because all the capacitances are equal, and the energy exponential will always cancel. 
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3. Calculations 

3.1. DC conductivity 

The DC conductivity is now calculated. Several related expressions [58,60,61] have been 
proposed for u x ;  we choose a procedure introduced in [60]. u x  is closely related to the 
critical resistance,&, defined such that the subnetwork consisting of all R with R Q Rc 
just percolates. Of course, for R = R,, the correlation length x .  which gives the separation 
of ‘conducting’ paths, diverges [ZO, 621, so the calculation of u x  must involve paths with 
largest R values somewhat greater than R,. The method used here to approximate u x  is 
to consider the network formed by including all R with R 4 ROm > R,, and calculate both 
the typical resistance of the paths generated and the density of such paths in terms of Rapt. 
Rope is then used as an optimization parameter. The result yields the highest conductivity 
one can associate with such a parametrization of the network. Of course physically adding 
further resistances to the’ network consistent with the actual distribution could not really 
decrease the conductivity; the  assumption^ is that the optimization yields an Rapt for which 
the additional contributions to UDC from including even larger resistances is negligible (due 
to the exponential dependence on the random variables). 

First define ro as the typical separation of sites, i.e. ; z r ; N  = 1. Then the typical 
number, a!, of resistors connected to an arbitrary site with R < RL exp(2r.a) is 

. .  

Percolation is assured [20,63] when a! = a ! ~  1: 2.7, i.e. 

R, = RA exp 2rJa RL exp tC (7a) 
ri 

a!c = 1 4nr;N dr’. 

Next, the correlation length (size of the largest clusters for a! c aC, separation of current 
carrying paths for (Y E a!J is calculated from [62] (with the normalized bond ptobability, 
p .  assumed to be proportional to the average number of bonds, a!, and the condition that 
x(a! = 1) = ro, explained following the equation) 

x = xol ( P  - P.)/P~~-” = rol (ac - 1/uc - a!) 1 ”  (8) 

with U rr 0.88 the critical exponent of the correlatlon length, and where xo is the typical 
bond (resistance) length. To make sure that x takes on reasonable values in the MHR, 
~0 is chosen to be the typical size of a ‘cluster’ with one (maximally valued) resistor 
(R = RA exp(2ro/a)) at the onset of the MHR, and to be approximately the size of the 
largest resistor on the ‘cluster’ when the cluster contains more than one resistor. 

Choosing a! = 1 as the onset of significant cluster formation is natural; for larger values of 
a! one may expect typical ‘clusters’ to have more than a single resistor, and the characteristic 
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number of resistances in a cluster will grow rapidly with 01 >. 1. In fact, the typical number 
s of sits: on a cluster will be 

where the combination, l /av,  of critical exponents is known as the fractal dimensionality 

6) - I1 

where the approximate equality follows using (Y - 0 1 ~  N 301,ll - r/rJ, i.e. assuming r near 
r,. The optimization (16) yields r = r,(l f av/rc), justifying the approximation. (Note, 
however, that it will not be sufficient Io make this approximation for calculations of a ( w )  
in the MHR because 01 may be as small as unity, and unity is not close to 0 1 ~  Y 2.7.) The 
typical separation, r,, of all resistors with R < R, is 

If one groups the resistors in orders of e = 2.718.. ., then the ratio, fo, of resistances with 
R ?z Re to the total number of resistors with R < Rc is 

As a consequence, one may calculate the typical separation, 1, of R values with R Y R, as 

From [60] and [61], one expresses the DC conductivity, UN. in terms of separation 1’ of 
Rapt values on the percolation path and the separation, x(RopI). of such paths as 

Two approximations must be explained. I is a function of In R (slowly varying, compared 
with x ,  which diverges at Rc, and with R). 1‘ has been replaced with 1, since it 
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has been shown [48] that 1’ is a slightly different power of fo from 1’ (the power is 
-(I + uu)/(l + d)  Y -0.35 rather than -0.33). This difference will never be detected. 

Optimization of (15) yields 

Using (14) and (16b) in (15) yields 

3.2. AC COnduCtivity 

A published result [64] for the AC conductivity in the pair-approximation regime is 

Rea(@) = u x  + (n /16 ) (e2 /kT)  e~p(-E~/kT)N~a~o[ln(u~~/o)]~. (18) 

(18) is derived from the known formula for the pair current [64,65], 

ReIp,(o) = (xZ/R)wZt2/(1 + 02rz)  (19) 

(with n the pair separation and z = RC/2)  and the volume concentration of contributing 
pairs (with r Y l/w). The justification for adding the DC conductivity as a parallel 
contribution is given in dielectric treatments 154,66,67] of the relevant inhomogeneities 
(pairs) in a medium with a background dielectric constant. 

In (18) the factor o arises from setting r = l/o in (19), two factors (a/2) ln(uph/o) 
originate from the factor xz in (19), and the remaining two factors of (U@) ln(uph/w) and 
NZ originate from the random statistics, i.e. the probability of locating a second site a 
distance x (the length of the hopping transition) from the first. The condition r = l/o sets 
the condition on R, and thus on x ,  (traditionally denoted by r, in the pair hopping regime). 
The fifth factor a /2  results from the specification of the value of the resistance to within 
a factor e = 2.718.. .. The factor ( e2 /kT)  exp(-Eo/kT) = CO is the uniform single-site 
capacitance; and results from the division by R. The numerical factors result 1591 from the 
appropriate averaging (e.g. over pair orientation). 

The condition setting or = 1 leads to 

Imagine that the frequency is lowered continuously. At o = U exp(-Zro/a) 00 all 
pairs with R 6 RA exp(Zr/a) have r 6 l/w. For those pairs w~th r c I/o, the current ph 
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is out of phase with the field, and as long as they do not coincidentally connect with pairs 
for which r 2~ l/o, they have only a minimal influence on the real part of the conductivity 
and may be treated as shorts (influencing only the imaginary part of the conductivity). If 
the frequency is reduced to below 00, however, typical clusters will have more than one 
resistance [59]. It is still appropriate to treat the smaller resistances as shorts [59], but 
they may no longer be ignored, as the charge generated by their associated capacitors also 
flows through the largest resistance in the cluster. The regime where such clusters (with 
one maximally valued resistor and some number of connected shorts) are relevant to a (w) 
has been termed the multiple-hopping regime (MHR) 150,591. 

In the MHR one must now formulate (1) the condition defining the appropriate clusters, 
i.e. those independent portions of the network which generate the dominant contribution to 
Reu(w), (2) the description of the currents in these clusters, (3) a condition for the statistics 
of these clusters, and (4) a condition defining the lowest frequency for which multiple 
hopping is the dominant transport mechanism, i.e. when relevant clusters are required 
to contain more than one maximally valued resistor. For lower frequencies relaxation 
is manifestly a non-local process. To a very good approximation (as will be seen) the 
cross-over occurs at the loss peak frequency [41, ,54611 (provided, of course, that Reu(o) 
for w < w, is a superlinear function of 0). 

The method to choose relevant clusters is proposed to be that at any w (not just in the 
pair-approximation regime) the dominant contribution to Reu(w) will originate from those 
pairs for which the maximum rclsluster is 

For clusters with a single maximal R, it has been shown in one dimension generally [68], and 
argued also in three-dimensional VRH systems, that smaller resistances in the contributing 
clusters may be replaced with shorts [41,59], allowing combination of their capacitances 
(configured in parallel) into two capacitors, one on each side of R. In the most likely 
situation, when the numbers on each side are identical, one can find the total capacitance 
of the cluster 

The actual structure [62] of the cluster is irrelevant (in this approximation) to finding r ,  
since charge transport through the shorted resistors R is instantaneous. Using (9) for the 
number of sites 

where the maximal R is simply R,, = RA exp(2rW/a); i.e., in the M H R ,  one must distinguish 
the length r,, from the size of the cluster, x .  (For self-consistency, subsequent calculations 
must use for x the correlation length, x. as a function of Rm,.) This transcendental equation 
for r, cannot be solved exactly; in fact a meaningful approximation is rather difficult, and 
is postponed until later. 

(23) is the important result of this paper. It synthesizes the physics of the low- and high- 
frequency regimes. Because it is based on a typical cluster size, with a single maximally 
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valued resistor, it has characteristics in common with the pair-hopping regime, i.e. the 
number of clusters per unit volume is given by the statistics of the resistors themselves 
(discussed below). As a logical continuation of this regime it provides for a smooth variation 
of the conductivity, and allows one to continue to isolate the chief contribution to Reo@) 
by choosing relaxation times equal to the inverse of the frequency. Because it contains the 
appropriate size of such clusters, as the frequency is reduced (in the vicinity of the loss 
peak) it allows a natural transition to the cluster-current regime at and below the loss peak. 
This type of procedure may now be applied to any system with a random distribution of 
elementary transition rates, and for which percolation theory is appropriate. 

Assuming that one has a solution to (23) for r (and hence R), how does one proceed 
to calculate Recr(w)? It is assumed here' that the pair statistics used are relevant for 
typical resistors R in the MHR since we took the maximally valued R of the cluster 
to be RA exp(2roju) at the onset of the MHR and used typical cluster sizes for every 
R z RA exp(Zro/u) (when o is reduced). Thus the occurrence of the clusters is equal 
to that of the resistors R themselves. This is a critical point. It means that the .structure 
of m(w) is not changed by the necessity of choosing a different statistical representation on 
passing to the MHR. 

As shown in [53], and is easy to understand, combining the capacitors on both sides of 
the single R,, individually allows one to use (19) for the current in a single pair, where 
now C 12 = CO /2  must be replaced by Cos / 2 ,  and x must reflect the actual RMS value of 
the site separations on opposite sides of R-. Thus the ciuster current is a generalized 
pair current, and the appropriate result for u(o) in the MHR is the same as (18) for the pair 
regime, but with multiplicative factors describing the enhancement of C, 5, and x [41,68]. 
The number of pairs is not enhanced, so only two factors of x are changed to the cluster 
dimension x.  The result for U @ )  is now 

u(o) = UN + (n/2)n2(e2/kT)uosr~x2 exp(-Eo/kT) 

with r, given in (23) and x appropriate for the particular r,. Note that at the onset of the 
MHR, s = 1, r = x = ra, in agreement with (18). In the MHR it will gradually become 
unnecessary to average over orientations [a] because the clusters are isotropic in the mean, 
and the charge transport will not be restricted to the maximally valued resistor (which has 
an orientation). Ignoring this numerical change tends to underestimate u(w)  - c r ~  by a 
factor of two. On the other hand, substituting x 2  for (x2 )  may tend to overestimate the RMS 
value, and assuming that all relevant resistors form typical clusters may tend to overestimate 
the number of clusters. These @resumably) numerical adjustments will tend to cancel, and 
are neglected (providing for the continuity of U(@) as well). 

If one writes for the enhancement of the capacitance f-'(o) one can express (23) as 

As long as 1 < f-*(o) < f;' the resulting transcendental equation IS appropriate. At 
a frequency o*, very near, but not quite at critical percolation, such that f-'(o) = f;', 
continued application of this formula apparently implies that typical clusters with more 
than one maximal R become relevant. But then one would be required to use cluster 
statistics, since one would not be describing relaxation in singlemaximal resistors. The 
question may legitimately be asked 'is o* the loss peak frequency?' We do not think so. 
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It is possible to consider independent clusters with one maximal R and f;’ shorts (with 
associated capacitors) in the range o, < o < o*. In this case R continues to grow with 
decreasing frequency until it reaches the critical value, Rc. When a path of resistors R 
with all values less than or equal to the critical value spreads from one electrode to the 
other, however, it is no longer possible to lower w and still increase R and consider the 
relaxation in the various resistors as independent 1481. The largest resistors R on the path 
are already R,. The relaxation can not be further slowed by choosing a larger capacitance 
either because to do so automatically brings in more resistors R, into any given cluster. 

Although this condition does not rigorously define w,[R,f;’Co]-’ as the lower limit 
of the MHR, it clearly shows that the lower bound cannot be lower than 0,. It is important 
that using cluster statistics and cluster-relaxation processes leads to a superlinear frequency 
dependence as long as the dominant clusters have more than one critical resistor; since the 
larger response (consistent with Maxwell’s equations, i.e. provided that the relevant portions 
of the network considered are indeed independent) is the sublinear (pair-structure) function 
of the frequency, it is preferred. 

In the approximation scheme chosen it is possible to solve analytically for u(w) in the 
frequency range, w, c w < w*. (23) reduces to 

When w = f@ph exp(-Zr,/a) = o,, r = r,, and critical percolation is reached. Note 
that the length of the relevant resistances is then r, as demanded, and the separation of all 
resistances R < R, is also r,, but the separation of maximally valued resistances R, is given 
in (14), and may be much greater than r,. Note that the enhancement of cluster capacitances 
(in contrast to VRH systems [41]) has led to a significant diminution of the critical frequency. 
At o = wc, x = I ,  the separation of critical resistors, since connection of infinite clusters of 
resistors R with R < R, and a typical number, f;’, of smaller resistors R per R, demands 
that the size of the considered clusters not exceed the separation of critical resistances. 

Evaluation of u(oc) using x = I and C = fr’C0 yields 

Representation of U @ )  as an (approximate) power law [1,68] (i.e. ~ ( o )  c( w s )  for w > 0, 
yields 

and, by comparing with (IC), the form of g may be determined, if the approximate powers 
(discussed below (30)) can be found. This is easy for oc < o < U*, but for a* < w < WO 

it is difficult. 
The approximate result for u(w)  for U, < o < o* is 

U(@)  = UDC + (n/16)(e2/kT)N2a5w[ln(fovph/.)l  1 1  (1 / r e f 0 )  2 exp(-EojkT). 
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For w" < w < 00, a reasonable approximation (exact in the limit w --f W. but not very 
accurate in the limit w + w*) is 

and all other quantities follow. 
The value of s can be calculated in both of these frequency ranges. For w, < w c w* 

one obtains s = 1 - 2/1n(fov,h/w), but for w* < w < 00 the calculation IS complicated, 
and not particularly enlightening. Certainly 1 - s is again proportional to some function 
of the ratio of the phonon frequency to the angular frequency, w, but in this case an 
extra factor f (0) multiplies the phonon frequency. The renormalizatlon of the capacitance 
effectively renormalizes the phonon frequency. Although this result may be quite general, 
in VRH systems it seems not to apply because, even though the number of capacitors per 
cntical resistance grows noticeably with decreasing temperature, the typical capacitance of 
the relevant capacitors shrinks in inverse proportion to the number of capacitors C and the 
product remains relatively constant e Z / k T .  

In any case, no relationship to the fractal dimensionality is seen in the power s. 

3.3. Low-frequency u(w)  

In this range, calculations have shown for both VRH [41] and SR [53] systems that the ratio 
of AC to DC conductivities can be written as 

U ( O ) / U ~  = h[wL2/ocP] (31) 

(not a power of (w/wc) times L2/ l2 ,  as for w >, wc). The result for the scaling function, h, 
has not yet been clearly established. But the scaling of the axes (defined in (1)) is clear. If 
the conductivity for w 5 w, is almost linear in the frequency (s --f l), then the arguments 
of g and h are nearly identical; in VRH systems this means that the power p is usually 
slightly different for w > w, than for w < w,. In SR systems, d = 0 on both sides because 
L and 1 are independent of T .  

If (as for SR systems in [53]) only clusters formed from maximal resistances R' = Rc 
are considered, the functional form of U(@) for w < 0, is linear. If (as'for VRH systems in 
1411) one includes also clusters with arbitrary maximal R values, a superlinear frequency- 
dependent term is also generated. Thus for VRH systems, u(w) has b&n written as a sum of 
two terms, one linear in o, and one superlinear. This is partly a consequence of evaluating 
a finite series of terms (corresponding to the discretized distribution of resistances) using 
an integral approximation. A similar decomposition could be tried in SR systems as well, 
although it was not attempted in [53]. While a superlinear frequency dependence it observed 
[38] in VRH systems, the prefactor [41] on such a superlinear term would be much smaller in 
SR systems. And if very low frequencies were to be investigated, then it is hard to imagine 
that u(w) could drop below the (linear in w )  contribution from clusters with maximal 
R = R,. 

In the original work [53] on SR systems it was.claimed that the frequency dependence 
of u(w)  should be the same as in VRH systems. This may be true, but the form suggested in 
[53] lacks the superlinear term; it is also difficult to tell whether both frequency-dependent 
terms will be observable in SR systems, even if the frequency dependence is the same, 
because of the much smaller magnitude of the prefactor. 
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4. Conclusions 

A treatment of the AC conductivity in the MHR of spatially random electronic hopping 
conduction systems has been attempted. The frequency dependence of U ( @ )  is slightly 
sublinear. The result a(o)/u~c is found to scale as a function of the ratio w/wc multiplied 
by the factor (L2/12),  a clearly general result from application of percolation theories, 
where o, is proportional to exp(-cc), the critical value of the stochastic part of the 
elementary microscopic rates, and (L2/12) is the ratio of the density of ‘paths’ relevant 
to DC and AC conduction respectively. The activation energy arising from a uniform 
contribution to all microscopic rates appears in both the AC and DC conductivities, and 
divides out of the quotient a(o)/Unc, and also out of the product R, and C, = CO f;‘, 
where C, is the equivalent parallel capacitance per critical resistance, R,, and fo is the 
fraction of critical resistances in the subnetwork defined by connecting all R < R,. The 
temperature independence of both the separation of critical resistances and the DC correlation 
length means that the scaling function g(o/o,) = a(o)/u~c has no explicit temperature 
dependence, in contrast to VRH systems. The generalization is clear: without a competition 
between distance and energy random variables, the ratio of the AC and DC conductivities in 
glasses will scale as a function of OR& = o/oc. with no explicit temperature dependence 
and in (Ib) p = 0, except for VRH systems. 

The onset of the MHR occurs when the separation of sites is equal to the average length 
of processes with r < l/w. Critical percolation occurs at a lower frequency, when the ratio 
of lengths to separations is approximately or about 40% larger than at the onset of the 
MHR. It is suggested that this is relevant to the problem of ionic conducting glasses, and 
that the regime of the MHR is that in which frequency-dependent scaling is closely obeyed, 
and in which the conductivity is significantly sublinear. The cross-over to nearly linear 
conductivity discussed recently [39,57] is then a cross-over to pair hopping. It has already 
been pointed out [54] that there is a relationship between the powers of o in these two 
regimes; it is suggested that this may help explain why the data of Dixon er a1 [44] for 
dipolar glasses (which are known to closely obey the same sort of scaling relationship near 
the critical frequency) also obeys related scaling at frequencies further removed from the 
critical frequency (if the analogue to the onset of the MHR involves the onset of correlations, 
as in ionic glasses, and similarly to a theory for dipole glasses 1691). Moreover this analysis 
shows how the controversy regarding activation energies in ionic conducting glasses might 
be resolved. The DC activation energy is likely to be larger than the typical barrier heights 
if the distribution of barrier heights is strongly asymmetric; such ,a typical barrier height 
may be related to the onset of the MHR. 
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